Chemorheology of a Highly Filled Epoxy Compound

نویسنده

  • A. B. SPOELSTRA
چکیده

Based on measurements of the dynamic viscosity, a strategy is proposed to find an expression that relates the viscosity of an epoxy compound during curing, to the temperature, shear rate, and degree of reaction. It appeared that the dynamic viscosity is a unique function of the effective shear rate (i.e. the product of frequency and strain) over a wide range of frequencies and strains after being corrected for the temperature. The effective shear rate dependence of the viscosity is described with a power law with an exponent that depends on the conversion. The effect of temperature is described with an Arrhenius-type equation with conversion dependent parameters. Differential scanning calorimetry is applied to determine the kinetic equation that is used, in combination with the thermal history, to obtain the conversion during the rheological measurements. The description of the viscosity gives a good prediction of the measured viscosity in the region between melting and gelation of the compound. The theories proposed in the literature to detect the gel point from dynamic experiments are examined. It is found that neither the G -G crossover, investigated by e.g. Tung and Dynes (1), nor the frequency-independence of tan( ), described by Winter (2, 3), can be used to determine the gel point of the given material. In contrast, the curves of G against conversion for measurements performed at equal strain but with different thermal histories appear to converge at a conversion of 18%, which agrees with the gel point determined through extraction experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compression Analysis of Hollow Cylinder Basalt Continuous Filament Epoxy Composite Filled with Shape Memory Wire

This paper presents an experimental investigation into the compression behavior of shape memory alloy hybrid composites (SMAHC) subjected to quasi-static loading taking into account of rotation effects of shape memory wire in basalt continuous filament (BCF) direct roving epoxy composite. Two types of specimen prepared, the BCF direct roving reinforced epoxy composite filled with shape memory w...

متن کامل

CHARACTERIZATION OF SHORT E-GLASS FIBER REINFORCEDGRAPHITE AND BRONZE FILLED EPOXY MATRIX COMPOSITES

The mechanical characterization of short E- glass fiber reinforced, graphite and sintered bronze filled epoxy composite was carried out in this study. The aim of the present study was to develop tribological engineering material. In this study the flexural strength, theoretical and experimental density, Hardness and Impact strength of composites was investigated experimentally. The results show...

متن کامل

EIS study of epoxy paints in two different corrosive environments with a new filler: rice husk ash

In this paper, the corrosion behavior of the filled epoxy paint with the rice husk ash RHA on steel substrates in two different corrosive environments natural sea water and 2M sulfuric acid has been studied. Electrochemical impedance spectroscopy EIS was used to evaluate protective properties of different organic coating systems due to the different filler composition. RHA was prepared by heati...

متن کامل

Experimental Study on Double-Walled Copper and Carbon/Epoxy Composite Tubes under the Axial Loading

This paper investigates axial compression process of multi-layered tubes with circular cross-section under the axial loading in the quasi-static condition using experimental method. Some specimens are prepared in seven different groups, namely; empty carbon/epoxy composite tubes, solid carbon/epoxy composite rods, empty copper tubes, composite tubes with silicon sealant filler, concentrically s...

متن کامل

Modeling of Stiffening and Strengthening in Nano-Layered Silicate/Epoxy (RESEARCH NOTE)

The aim of this paper is to investigate adhesion property between nano-layered filler and the polymer matrix using a combination of experimental and micromechanical models as well as the changes in yield strength and stiffness of a layered silicate-filled epoxy nanocomposite. The results indicate that addition of intercalated layered silicate particles increased Young’s modulus and yield streng...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002